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1. Entropia

Zmierzamy do bardziej zaawansowanego sformutowania Il zasady termodynamiki w oparciu
o entropi¢. Zanim jednak zdefiniujemy entropig, skoncentrujemy si¢ na tzw. nierdéwnosci
Clausiusa.

1.1. Nierownos$¢ Clausiusa; pierwszy krok do entropii

Pokazemy, ze dla wszystkich obiegow zamknigtych obowiazuje nastgpujaca nieréw-
no$¢/rownos¢, nazywana nierownoscia Clausiusa:

§8TQ <0 (1)

Poniewaz kazdy obieg odwracalny mozna zastapi¢ pewna liczba obiegéw Carnota rozpatrzy-
my zatem wszystkie odwracalne obiegi Carnota; prawo- 1 lewobiezne (silniki cieplne i chlo-
dziarki) plus wszystkie obiegi nieodwracalne.

Zaczniemy od odwracalnego silnika cieplnego, pokazanego na Rys. 13.1.

Rys. 13.1. Odwracalny silnik cieplny. Silnik pobiera ciepto Q, ze zbior-

Q

g nika gornego, wykonuje prace Wi oddaje ciepto Q.
Z 1 zasady:
W= Qg - Qd 5
Qq a wigc mamy przypadek
Q g 2 Qd'
Z 11 zasady:
T T Q
nzl_%zl__d — &:_dj_g:% (2)
Qg T, Q Ty Tg Tq
z czego za chwilg skorzystamy.
— izotermy

— adiabaty

Rys. 13.2. Obieg Carnota dla gazu doskona-
tego. Czerwonymi linie sq adiabatami (roz-
prezanie 2 —3, temperatura spada z Ty do T, i
sprezanie 4 — 1, temperatura rosnie od T, do
T,) a czarne izotermami (1 — 2, pobor ciepta
ze zbiornika gérnego o temperaturze T, i 3 —
4, oddawanie ciepta do zbiornika dolnego o
temperaturze T,).

cisnienie P, kPa

objetos$¢ wiasciwa v, m3/kg

Obliczamy catk¢ okrezna §8TQ dla od-

wracalnego silnika cieplnego:
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5Q T8Q 18Q . 18Q . r8Q $8Q 18Q Qp Qg _
e I o e s T

gdzie skorzystaliSmy z (2). Przemiany i stany wystgpujace w powyzszym réwnaniu pokazano
na Rys. 13.2.

Mamy zatem:
§5Q=Q,-Qq >0

2

W granicznym przypadku, dla Ty — T, :
$3Q=Qyz -Qq >0
a catka okrezna i tak jest rowna O:

2

dla wszystkich T (oczywiscie silnik ma by¢ silnikiem, wige zawsze T, 2 Ty .

Dla wszystkich odwracalnych silnikéw cieplnych:

$5Q=0
5Q - 4)
SgT—O

nierowno$¢ Clausiusa jest spetniona.

Dla silnika nieodwracalnego pracujacego pomigdzy T, i Tq pobierajacego Q,:

W'<W
a poniewaz:
W=Q,-Qq i W=Q,-Qq
musi zachodzi¢:
Qg —-Q'4<Qg —Qq,
a zatem:
Q'q>Qq- ()
Dla silnika nieodwracalnego
§8Q:Qg_Q'd>0; §8TQ=($—:—(?F—:<O

gdzie druga nierownos$¢ wynika z (5) 1 (3).
Jednak dla ustalonych T,, Ta 1 Q,, gdy rosnie nieodwracalno$¢, czyli W'—0 i Q'y > Qq

mamy:

-124 -



Termodynamika Techniczna dla MWT, Rozdziat 13. © AJ Wojtowicz IF UMK

§5Q—>0; §8_Q:&_&<0.
T T, Ty
Tak wigc, dla wszystkich silnikow nieodwracalnych:
§5Q>0;
§8_Q <0
T

a dla wszystkich silnikow, odwracalnych i nieodwracalnych czyli wszystkich obiegow pra-
wobieznych:

§ 0Q >0;
§8_Q <0
T
nierowno$¢ Clausiusa jest spetniona.

Rozpatrzymy teraz odwracalna chtodziarke, czyli uwzglednimy obiegi lewobiezne. Jak poka-
zano na Rys. 13.3, chlodziarka pracuje pomigdzy Zrédtem dolnym o temperaturze Tq 1 gor-
nym o temperaturze T,

_ Tg Rys. 13.3. Chiodziarka odwracalna. Chiodziarka pobiera cieplo Q, ze

T Qg Zrodta dolnego o temperaturze T, i oddaje ciepto Q, do zZrédta gérnego o

temperaturze T,. Do pracy chlodziarki niezbedna jest takze dostarczana z
W
h
Q

zewnqtrz praca W..
d

Z 1 zasady:
W+Qq :Qg
awigc Qg >Qq choc¢, dla T, > Ty, Qg — Qq.

Mamy zatem:

1 3
§5Q=j5Q+j5Q=—Qg+ngo.
2 4

Z 11 zasady:
Q_% | % Q_, ©6)
Ty T, T, Ty

skad:

1 3
§5TQ=j5Q+j5T_Q=_&+&=o.
d

2 Ty T, Ty

Podsumowujac, dla wszystkich odwracalnych chtodziarek (obiegow lewobieznych):
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§5ng

Nierownos¢ Clausiusa (w wersji rownos$¢) obowiazuje takze obiegéw lewobieznych odwra-
calnych.

Dla chlodziarki nieodwracalnej pracujacej pomigdzy Tq 1 T, pobierajacej Qq:
W'>W
a poniewaz:
W =Q, -Qq i W'=Q'y-Qq
musi zachodzi¢:
Q'g—Qq4 > Qg —Qq
CO 0zZnacza, ze:
Q> Qg @)
co wykorzystamy za chwilg.
Tak wigc, dla chtodziarki nieodwracalne;j:
§8Q=-Q'y+Qq <0; §8—Q:—&+&<0

T T, Ty

przy czym druga nier6wno$¢ wynika z (6) 1 (7).

Rozpatrzymy przypadki graniczne; zaczniemy od malejacej nieodwracalnosci (przy ustalo-
nych Tq, Ty 1 Qq). Gdy: W'—> W 1, w konsekwencji Q'y = Q, , niezmiennie mamy:

3§8Q<0; §5—Q=—%+&<o.

T T, Ty

Dla ustalonych T4, T, 1 Qg, gdy nieodwracalno$¢ rosnie, W'—>oo i, w konsekwencji
Q'y > oo ciagle mamy:

8—Q:—%+&<O.

T T, Ty

3§5Q<0; §

Dla wszystkich chlodziarek nieodwracalnych (obiegéw lewobieznych):
§ 8Q < 0;
§8_Q <0
T

a dla wszystkich chtodziarek, odwracalnych i nieodwracalnych:
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3€5ng;
§6TQ30

0, zachodzi:

vV IA

Podsumowujac, dla wszystkich mozliwych obiegdw: §8Q
§ Q <0
T

przy czym rownos$¢ zachodzi dla obiegdw odwracalnych.

Udowodnilismy nieréwnos¢ Clausiusa.

1.1.1. Nierownos$¢ Clausiusa jako test zgodnosci obiegu z I zasada termodynamiki

Nierownos¢ Clausiusa daje mozliwos$¢ weryfikacji, czy dany proces (obieg) jest czy nie jest
zgodny z II zasada termodynamiki.

Przyktad. Sprawdzi¢ zgodno$¢ dziatania prostej sitowni parowej pokazanej na Rys. 13.4 z 11
zasada termodynamiki.

TURBINA
praca
KOCIOL
SKRAPLACZ

Iﬁl ciepto
e ] l:, B
POMPA

4

Rys. 13.4. Prosta sitownia parowa. Parametry pary w poszczegolnych lokalizacjach podano w tabeli.

Tabela 1. Parametry pary w najwazniejszych lokalizacjach sitowni parowe;j

Lokalizacja | x (stopien suchosci) | ciSnienie P, MPa
1 0 0,7

2 1 0,7

3 0,9 0,015

4 0,1 0,015
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Poniewaz transfer ciepta zachodzi w procesach 1 — 2 i 3 — 4 catka okrgzna bgdzie rowna:
2 4
§5_Q _ IS_Q N JS_Q
T 1 T 3 T

Procesy te to izotermiczne pobieranie ciepla ze zrodta gornego o temperaturze Ty 1 izoter-
miczne oddawanie ciepta do Zrodta dolnego o temperaturze Ts4). Mamy zatem:

2 4 2 4
[0Q.18Q. 1 fp, ! j5Q=m_(hz—h1+h4—hsj:
T3 T T)y T3(4) 5 T T3

'[2763.5 -697.22 463.13-2361.71

+ =-1.089-mkJ/K <0
438.15 327.09

Przebieg procesu w rozpatrywanej sitowni parowej jest zgodny z II zasada termodynamiki.

1.2. Entropia; definicja

Definicja entropii jest oparta na Il zasadzie termodynamiki, tzn. nierdwnosci Clausiusa:
§@ <0.
T
Dla obiegu odwracalnego nieréwnos$¢ Clausiusa staje si¢ rownoscia:

o

Rozpatrzymy obiegi pokazane na Rys. 13.5.

P

y

Rys. 13.5. Rysunek pomocniczy do dowodu, zZe entropia jest funk-
2 cjq stanu.

Pomigdzy stanami 1 i 2 moga zachodzi¢ rdézne procesy.

Wszystkie trzy pokazane procesy, a, b i ¢, sa odwracalne.

Proces a prowadzi ze stanu 1 do 2. Proces b jest procesem

» odwrotnym do procesu a, zaczyna si¢ od stanu 2 i konczy na

\/  stanie 1. Proces ¢ jest dowolnym procesem odwracalnym
taczacym stany 1 1 2.

Korzystajac z tych procesow, skonstruujemy dwa roézne obiegi zamknigte i odwracalne, do
ktorych zastosujemy nieréwnos$¢ Clausiusa.

a b 2 1
Tobieg: 152,21 I(S—Qj +I(S—Qj =0
1 T Ja 2 Ty

c b 2 1
I obieg: 152,21 I(S—Qj +j(8—Qj =0
1 TJe 2 T b
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Odejmujac stronami réwnania dla obu obiegdw otrzymujemy:
f(a_ej ] f(a_ej ~o
1 T a 1 T ¢
a poniewaz proces ¢ byl dowolny, wigc:
}(S_Qj _ }(S_Qj _
1 T a 1 T ¢
Whiosek jest oczywisty; warto$¢ catki:
j5
1 T
nie zalezy od wyboru drogi pomigdzy stanami 11 2.

Poniewaz warto$¢ tej calki zalezy od standw 1 i 2, zatem musi by¢ ona réwna r6znicy dwoch
liczb okreslonych dla stanow 1 1 2. Liczby te musza by¢ wartosciami pewnej funkcji, ktéra
jest funkcja stanu. Mamy wigc:

2
S, S = lub dS = (7)
2 {( T Jodwr T Jodwr

pod warunkiem, ze proces prowadzacy od stanu 1 do 2 jest odwracalny.

Funkcj¢ stanu S nazywamy entropia. Dowolna funkcja stanu moze by¢ takze parametrem
termodynamicznym uktadu (jesli taki bedzie nasz wybor). Entropia moze by¢ zatem parame-
trem uktadu, ktéry wraz z innym parametrem (np. T, P, v, x , u lub h) okresla stan uktadu.

Entropia uktadu do ktorego dostarczamy cieplo, rosnie, a entropia uktadu, ktory oddaje cie-
pto, maleje.

1.3. Entropia w przemianie nieodwracalnej; po raz pierwszy (bedzie wigcej).

Poniewaz entropia jest funkcja stanu, nie ma znaczenia czy proces prowadzacy ze stanu 1 do
stanu 2 jest odwracalny czy nieodwracalny. Jednak aby obliczy¢ roznicg entropii w tych sta-
nach musimy policzy¢ catke:

13

1 T

dla jakiej$ przemiany odwracalnej prowadzacej ze stanu 1 do stanu 2, bo tylko dla przemiany
odwracalnej warto$¢ tej catki jest rowna réznicy wartosci funkcji stanu S (entropii):

2
) _ I(S_Qj
nieodwr 1 T jakas odwr

Zatem zeby wyliczy¢ zmiang entropii dla przemiany nieodwracalnej w uktadzie zamknigtym,
zastgpujemy przemiang nieodwracalng przemiang odwracalng pomigdzy tymi samymi stana-
mi, 112 1wyliczamy catke:

(S2 -8
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2

J.(S_Qj = S2 _Sla
T

1 odwr

dla tej konkretnej przemiany odwracalne;.

Jesli odwracalna przemiana jest izotermiczna:

2

8Q _Q

S, -8 =[=====.
T T

Jesli zmiana temperatury jest nieduza, lub wystarcza nam warto$¢ przyblizona lub/i nie
umiemy wyliczy¢ catki, mozna skorzysta¢ z przyblizenia:

2
5Q _Q
SZ - Sl - J.T - T_ .
1 $
1.4. Entropia w procesie rozpr¢zania swobodnego i odwracalnego rozprezania izoter-
micznego gazu doskonalego

Zastosujemy nasza aktualna wiedze o entropii do wyliczenia zmiany entropii w procesie nie-
odwracalnym. Zajmiemy si¢ rozprgzaniem swobodnym gazu doskonalego. Dwa stany ukta-
du, w ktérym zachodzi rozprgzanie swobodne pokazano na Rys. 13.6.

Rys. 13.6. Nieodwracalne rozprezanie swobodne gazu
doskonatego. W stanie 1 caly gaz znajduje sie w pierw-
szym pojemniku.  Drugi pojemnik jest odpompowany.
Oba pojemniki sq potqczone rurkq z kranem. Po odkre-
ceniu kranu gaz wypetnia oba pojemniki i po dostatecznie
diugim czasie osiqga stan rownowagi termodynamicznej
stan 1 2. Objetos¢ obu pojemnikéw jest jednakowa.

Dla gazu doskonatego:

V,=2V; T, =Ty; Py =P/2

Roéwnos¢ temperatur zostata potwierdzona w do-
$wiadczenia Joule’a — Thomsona. Gdyby pojemniki
nie byly izolowane termicznie, rOwnowaga termodynamiczna bylaby osiagnigta nawet szyb-
ciej (pojemnik pierwszy pobralby z otoczenia tyle samo ciepta ile oddalby pojemnik drugi; w
konsekwencji nie byloby transferow ciepta netto). Warto takze zwroci¢ uwagg, ze (jak si¢ za
chwilg przekonamy) chociaz uktad ten efektywnie nie wymienia ciepla z otoczeniem to jed-
nak przemianie towarzyszy zmiana (wzrost) entropii uktadu. Jesli wzrost entropii w uktadzie
nie jest spowodowany wymiang ciepla lub masy z otoczeniem to mowimy, Ze entropia jest w
uktadzie generowana (i kojarzymy to z nieodwracalnoscia przemiany).

stan2”

Swobodne rozprezanie jest przemiang nieodwracalng; nie mozna przeciez oczekiwac, ze po
przemianie 1 — 2 proces si¢ odwrdci 1 gaz zgromadzi si¢ samorzutnie w lewym zbiorniku.
Cho¢ stan poczatkowy 1, oraz koncowy 2, sa stanami rownowagi, stany posrednie nie sg sta-
nami rownowagi. Nie jest mozliwe przeprowadzenie tej przemiany w kierunku odwrotnym.
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Aby wyliczy¢ zmiang entropii w procesie rozprezania swobodnego wykorzystamy fakt, ze
stan 1 12 moga by¢ stanami odwracalnej przemiany izotermiczne;.

Przemiang t¢ zrealizowa¢ mozna w uktadzie pokazanym na Rys. 13.7.

zmienne
obciazenie

——— [T

regulowan = . —
grzejniky V,=2V,; P,=P,/2

Rys. 13.7. Realizacja przemiany izotermicznej pomiedzy stanami 1 i 2, ktore sq takze stanami poczqt-
kowym i koncowym dla rozprezania swobodnego, pokazanego na Rys. 13.6. Malejqce obciqzenie tlo-
ka powoduje rozprezanie gazu w cylindrze; obnizaniu sie temperatury zapobiega kontrolowany przez
czujnik temperatury uktad sterujqcy potqczony z grzejnikiem.

Poniewaz przemiana ta jest odwracalna:

AS=S, -8, = jS—Q=ljaQ @®)

1
Z 1 zasady dla przemiany izotermicznej:

dU=58Q-8W =0

- )
5Q = 8W = PdV
Podstawiajac (9) do (8) i wykorzystujac rownanie stanu gazu doskonalego otrzymamy:
V,
=—deV—l jﬂdV—
T Ty V
. (10)
— 2 —
nR | av = annﬁ = Nklnﬁ
v, vV Vi Vi

gdzieR to uniwersalna stata gazowa (w kJ/kmol'K), a n to liczba kmoli gazu.
= 2
Dla V, =2V;: AS=S,; -5 :annT:Nklnz,

a wigc zmiana entropii pomigdzy stanami 1 i 2 jest r6zna od zera (takze dla rozprezania swo-
bodnego, dla ktorego nie ma wymiany ciepta pomigdzy uktadem i otoczeniem).
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Pokazemy, ze taki sam wynik dostaniemy dla statystycznej interpretacji entropii

1.5. Entropia w ujeciu statystycznym

Zastosujemy teraz statystyczne podejscie do problemu rozktadu czasteczek gazu pomiedzy
dwoma potéwkami izolowanego zbiornika. Uktad taki jest bardzo podobny do uktadu dwoch
potaczonych pojemnikow pokazanych na Rys. 13.6.

Rozwazymy doktadniej sytuacje, gdy liczba czasteczek gazu wynosi 6. Na Rys. 13.8 pokazu-
jemy dwa mikrostany dwoch réznych konfiguracji.

a ::::: ____________________________ :::::: b
© o
® i®

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguraciji (3,3)

Rys. 13.8. Pojemnik z gazem dzielimy na dwie rowne objetosciowo czesci. Rozwazamy wszystkie moz-
liwe rozktady skonczonej liczby czqsteczek gazu pomiedzy tymi dwoma potowkami Zaktadamy, ze cat-
kowita liczba czqsteczek gazu wynosi 6.  Na rysunku pokazano a) jeden z pietnastu mikrostanow kon-
figuracji (4,2), b) jeden z dwudziestu mikrostanow konfiguracji (3,3).

Poniewaz czasteczki sa identyczne, obie potéwki zbiornika sa jednakowe, prawdopodobien-
stwo znalezienia dowolnej czasteczki w kazdej z nich jest takie samo.

Konfiguracja wielokrotnos¢ W obliczenie W prawdopodobienstwo
ozn. nl n2

I 6 0 1 6!/(6!.0!) 0,0156

I 5 1 6 6!/(5!.1!) 0,0938

11 4 2 15 6!/(4!.2!0) 0,234

v 3 3 20 6!/(3!.3!) 0,313

v 2 4 15...

Laczna liczba mikrostanéw 64, wszystkie mikrostany sa tak samo prawdopodobne.

Liczba mikrostanow odpowiadajacych danej konfiguracji (n1,n2) to wielokrotnos¢ tej konfi-
guracji W.
N!

W = ,
n1!-n2!

a prawdopodobienstwo danej konfiguracji bedzie rowne:

P(nlaﬂ2)=—w(nl’n2)

S W)

Dla tak niewielkiej liczby czasteczek rozktad ten ma co prawda maksimum dla rownego po-
dzialu czasteczek pomigdzy dwie potowki, ale prawdopodobienstwo jest znaczace takze dla
innych konfiguracji.
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Sytuacja zmienia si¢ bardzo silnie dla rosnacej liczby czasteczek.

Na Rys. 13.9 pokazano symboliczny wykres liczby mikrostanow w zaleznosci od procentowej
zawarto$ci czasteczek w lewej potowie zbiornika w przypadku bardzo duzej liczby czasteczek
w zbiorniku. Niemal wszystkie mikrostany odpowiadaja w przyblizeniu rownemu rozktadowi
liczby czasteczek gazu pomig¢dzy dwoma potdwkami zbiornika.

y

Rys. 13.9. Liczba mikrostanow w konfiguracjach
odpowiadajqcych  odpowiedniej  procentowej
zawartosci czqsteczek w lewej potowce pojemni-
ka z gazem dla bardzo duzej liczby czqsteczek.

Liczba mikrostanéw W

I I v
0 25 50 75 100%

Procent czasteczek gazu w lewej potéwce

Zaproponowany przez Boltzmanna zwiazek pomigdzy entropia danego stanu a liczba mikro-
stanow W konfiguracji odpowiadajacej danemu stanowi jest nastgpujacy:

S=kInW  wzoér Boltzmanna na entropig (11)

gdzie k jest stata Boltzmanna. Stan termodynamiczny, cechujacy si¢ duza liczba réwnowaz-
nych mikrostanow bedzie z jednej strony stanem o wysokiej entropii, z drugiej o wysokim
stopniu nieuporzadkowania. Entropia zatem jest miara nieuporzadkowania uktadu termody-
namicznego na poziomie molekularnym. Jak pokazuje przyktad z rozprgzaniem swobodnym,
spontaniczne (samorzutne) procesy w ukladzie powoduja wzrost entropii. Mato prawdopo-
dobne sa procesy odwrotne.

Bardzo przydatny w konkretnych rachunkach zwiazanych ze wzorem Boltzmanna jest wzor
Sterlinga:

InN!'~ N(InN)-N.
Przyklad 1.

Wyobrazmy sobie, ze w zbiorniku znajduje si¢ 100 nierozroznialnych czasteczek. Ile mikro-
stanéw odpowiada konfiguracji n; = 50 i n, = 50? A ile konfiguracji n; = 100 i n, = 0? Zinter-
pretuj uzyskane wyniki w odniesieniu do prawdopodobienstwa wystapienia obydwu konfigu-
racji.
157
W(SO,SO): N 1000 9,33-10 ~1,01-10%
n;!n,! 5050 (3’04.1064)2

157

N! 100! 9,33-10

W(100,0) = = Sl =
( ) ni'ny! 10040 933.101%7

P(50,50)=1,01-10%% x P(100,0)

Jak widzimy prawdopodobienstwo réwnego rozktadu liczby czasteczek gazu pomigdzy dwie
poléwki zbiornika jest znacznie wigksze niz prawdopodobienstwo, ze wszystkie czasteczki
znajda si¢ w tej samej potdéwcee zbiornika.
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Przyklad 2.

Pokazalismy wcze$niej, ze kiedy n moli gazu doskonatego zwigksza dwukrotnie swoja objg-
to$¢ na drodze rozprezania swobodnego, to wzrost entropii od stanu poczatkowego 1 do stanu
koncowego 2 jest rowny:

S, —S; =nR1In2 = NkIn2
Sprawdzimy, ze korzystajac ze statystycznej interpretacji entropii otrzymamy ten sam wynik:
NI

S; =klnW; =kln——
NO!

N!
(N/2)(N/2)
Stosujac wzor Stirlinga otrzymujemy:

S, —S; = k(InN'-2-kIn(N/2))-kIn1

M NN-N-2:[ DN X
2 2 2

S, =kInW, =klIn

=kN(1nN—1ngj =NkIn2=nRIn2

a wigc doktadnie taki sam wynik jaki dostaliSmy wczes$nie;j.
1.6. Zmiany entropii gazu doskonalego i poldoskonalego podczas dowolnej przemiany
odwracalnej w ukladzie zamkni¢tym

Wybieramy stan poczatkowy 1 jako (T;, Vi) i stan koncowy 2 jako (T, V,). Przyjmujemy T,
# T2 1 V| # V2 inie precyzujemy drogi czyli przemiana czynnika termodynamicznego w roz-
patrywanym uktadzie zamknigtym jest dowolna (ale quasistatyczna czyli odwracalna).

Z pierwszej zasady termodynamiki:
dU =06Q -dW; d3Q =dU +oW.
Dla gazu doskonatego:

dU =nCy,/dT; OW =PdV = nRTC17V

gdzie n jest liczba moli (kmoli) gazu, a R uniwersalna stala gazowa. Po podstawieniu:
8Q =nCydT + nﬁTdVV,

a po podzieleniu przez T otrzymujemy:

Po scatkowaniu od stanu poczatkowego 1 do stanu koncowego 2 mamy:

2 2 2 2
%Q _ =[dS= anVd—T+ jan—V =nCy lnT—+annV (12)
A zatem:
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T _
AS=S, -S; =nCy -2 £ nR In~2 (13)
T Vi

niezaleznie od przemiany gazu doskonatego prowadzacej z 1 do 2.

Dla gazu pétdoskonalego uwzgledni¢ musimy zalezno$¢ ciepta wtasciwego Cy od temperatu-
ry. Wzor (12) przyjmie zatem postac:

2 —
AS=S, -S; :nICVd—T+annﬁ.
T Vi

Oczywiscie wyrazenie to przechodzi w wyrazenie (13) dla Cy niezaleznego od T. Catke
2C
=Y 4T
1 T

mozna obliczy¢, biorac analityczne wyrazenia przyblizajace Cy cho¢ najwygodniej jest wyko-
rzysta¢ tablice, dla sporzadzenia ktorych obliczenia takie zostaly wykonane Najcze$ciej jed-
nak korzysta si¢ z tablic z calka z Cp a nie z Cy (analityczne wyrazenia na Cp zostaly podane
np. w Tabeli A6, SBvW).

Wykorzystamy zatem wyrazenie:

a5 =22 _ncy R Y _(cp -R)AL 4+ iR LY
T T A% T
by otrzymac:
dSzS—Q:nCPd—T—nﬁ(d—T—d—Vj
T T T V
a po uwzglednieniu rownania stanu gazu doskonatego (i poétdoskonatego):
PV =nRT
PdV + VdP = nRdT
mamy:
dS=6—Q=nCPd—T—nR[d—T—d—VJ—nCPd—T—n§d—P (1)
T A% T P

Po scatkowaniu od stanu poczatkowego do koncowego otrzymamy:

Ty T, o
S(2)-s(1)= IC—PdT I RdP n C—PdT+njC—PdT—annP—2
P T T P
1 T, T 1
‘ , (14)
_ {0 (5)_ 0 )_ 1. P2
_n(sT2 (2) ST, (1))-nR In P
gdzie catka:
T
ICTP T (15)
T,

jest stablicowana funkcja jednej zmiennej T (np. dla powietrza zobacz Tabelg A7 SBvW, dla
szeregu innych gazoéw zobacz takze Tabelge A8, tamze). Wartosci w tych tabelach zostaty
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podane dla ci$nienia 0,1 MPa. Dla innych ci$nien warto$¢ odczytang z tabeli nalezy skory-
gowac o poprawke:

— P
—ann—z,
Py

gwarantujaca uwzglednienie zaleznosci entropii takze od ci$nienia P.

1.7. Zmiany entropii dla cieczy i ciala stalego

Rozwazamy infinitezymalna zmiang stanu substancji niesci§liwej w trakcie przemiany odwra-
calnej.

Z 1 zasady termodynamiki (na jednostk¢ masy rozpatrywanej substancji, powiedzmy 1 kg):
0q=du+Pdv = du

gdyz zmiany obj¢tosci wlasciwej dla cieczy i ciata statego sa nieduze. W roéwnaniu tym 6q to
cieplo dostarczone w trakcie przemiany odwracalnej (na kg substancji):
oq =CdT
gdzie C to ciepto wlasciwe danej substancji:
C=Cp =Cy.
Z 11 zasady termodynamiki dla przemiany odwracalne;j:

ds=8—q
T

a wiec:
ds ~ du ~ Cd—T.
T T
Jesli ciepto wlasciwe nie zalezy od temperatury:
sz—sl=Cln& (16)
T
a jesli zalezy, to:
c(T)

g (17)

82 =81 = T

— — N

gdzie przy catkowaniu nalezy skorzysta¢ z przyblizonych analitycznych wzoréw na C.

1.8. Czy entropia moze male¢?
(moze, ale nie w uktadzie izolowanym)

Pokazalismy, ze dla izotermicznego odwracalnego rozpr¢zania gazu doskonalego (Rys.
13.10) entropia ro$nie:

2 v,
As:jé—Q=l deV:Nklnﬁw.
T T Vi

1
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gdyz 0Q>01 V2 >V1.

Pr
Rys. 13.10. Izotermiczne odwracalne rozprezanie gazu

doskonatego. Stan 1 to stan poczqtkowy, stan 2 to stan
koncowy.

Oznacza to jednak, ze dla przemiany odwrotnej,
1 czyli izotermicznego odwracalnego spr¢zania,
V' entropia bedzie male¢ (wynika to z nierbwnosci
Clausiusa ale i z rachunku, przeciez uktad oddaje ciepto):

1 v,
ASz_[@zl_[PdV=Nkln&<O.
ST Ty v,

2

Entropia zawsze ro$nie dla przemiany nieodwracalnej w uktadzie izolowanym. Tutaj uktad
nie jest izolowany (jest wymiana ciepla ze zbiornikiem ciepta) i przemiana jest odwracalna.

Jesli potraktujemy gaz i zbiornik ciepta jako dwie czg$ci wigkszego uktadu izolowanego, to
zmiana entropii catego uktadu bgdzie rowna zeru dla odwracalnego rozpr¢zania izotermicz-
nego:

0

2 2

dQgaz  £dQy,
AS:AsgaZJrAszb:jT —jTZb ~
z

1 8z 1

2dyz Qgaz > 0, Qgaz = Qyp 1 temperatury T, 1 T dla przemiany odwracalnej r6znig sig infini-
tezymalnie, Tga, = Typ.

Dla odwracalnego spr¢zania izotermicznego, z tych samych powodow:

Zd 2
d
AS =Sy, +ASp =~ anz+j Qb .
1 Tgaz 1 TZb

Entropia uktadu izolowanego nie zmienia si¢ w przemianie odwracalnej. Gdy zachodzi prze-
miana nieodwracalna (jak np. rozpr¢zanie swobodne), w uktadzie generowana jest dodatkowa
entropia. Zatem zmiana entropii uktadu izolowanego w wyniku zachodzacej w nim przemia-
ny nieodwracalnej nie bilansuje si¢ do zera, lecz bedzie dodatnia (entropia uktadu izolowane-
go ro$nie w wyniku przemiany nieodwracalnej). Powrdcimy do tych zagadnien jeszcze raz w
nastepnym rozdziale.

Koncowy wniosek jest taki:
Entropia uktadu izolowanego nigdy nie maleje:
AS=>0. (18)

Entropia uktadu jest nie tylko miara nieuporzadkowania tego uktadu; jej zmiany sa takze mia-
ra nieodwracalnosci zachodzacych w nim procesow.

Jest to jeszcze jedno sformutowanie 11 zasady termodynamiki.
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Inne, z ktorymi spotkali§my si¢ wczesniej to:
sformutowanie Kelvina — Plancka (o silniku idealnym),
sformutowanie Clausiusa (o chtodziarce idealnej)

1 nierownos$¢ Clausiusa, ktora stanowi podstawe dla wprowadzenia entropii a takze kryterium,
pozwalajace oceni¢ zgodnos$¢ danego procesu lub obiegu z I zasada termodynamiki.

Sprawdzian 1

Woda jest ogrzewana za pomoca kuchenki. Uszereguj od najwickszej do najmniejszej zmia-
ny entropii wody w nastgpujacych przedziatach temperatury: a) od 20°C do 30°C, b) od 30°C
do 35°C i c) od 80°C do 85°C.

Sprawdzian 2

Gaz doskonaty w stanie poczatkowym 1 ma temperatur¢ T;. W stanach koncowych a i b,
ktére gaz moze osiagna¢ w wyniku przemian zaznaczonych na wykresie, jego temperatura T,
jest wigksza niz w stanie poczatkowym.

N 2.2 Czy zmiana entropii w przemianie prowadzacej ze stanu
o 1 do stanu a jest wigksza, taka sama, czy mniejsza niz w
IS5 przemianie prowadzacej do stanu b?
@ b, T,
© 1, T,

objetos¢ V
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