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1. Entropia 

Zmierzamy do bardziej zaawansowanego sformułowania II zasady termodynamiki w oparciu 

o entropię.  Zanim jednak zdefiniujemy entropię, skoncentrujemy się na tzw. nierówności 

Clausiusa. 

1.1. Nierówność Clausiusa; pierwszy krok do entropii 

PokaŜemy, Ŝe dla wszystkich obiegów zamkniętych obowiązuje następująca nierów-

ność/równość, nazywana nierównością Clausiusa: 

0
T

Q
≤

δ
∫          (1) 

PoniewaŜ kaŜdy obieg odwracalny moŜna zastąpić pewną liczbą obiegów Carnota rozpatrzy-

my zatem wszystkie odwracalne obiegi Carnota; prawo- i lewobieŜne (silniki cieplne i chło-

dziarki) plus wszystkie obiegi nieodwracalne. 

Zaczniemy od odwracalnego silnika cieplnego, pokazanego na Rys. 13.1.  

 

Rys. 13.1.  Odwracalny silnik cieplny.  Silnik pobiera ciepło Qg ze zbior-

nika górnego, wykonuje pracę W i oddaje ciepło Qd.   

 

Z I zasady: 

dg QQW −= , 

a więc mamy przypadek  
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z czego za chwilę skorzystamy. 

 

 

Rys. 13.2.  Obieg Carnota dla gazu doskona-

łego.  Czerwonymi linie są adiabatami (roz-

pręŜanie 2 →3, temperatura spada z Tg do Td i 

spręŜanie 4 → 1, temperatura rośnie od Td do 

Tg) a czarne izotermami (1 → 2, pobór ciepła 

ze zbiornika górnego o temperaturze Tg i 3 → 

4, oddawanie ciepła do zbiornika dolnego o 

temperaturze Td).  

 

Obliczamy całkę okręŜną ∫
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gdzie skorzystaliśmy z (2).  Przemiany i stany występujące w powyŜszym równaniu pokazano 

na Rys. 13.2.   

Mamy zatem: 

0
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=
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>−=δ

∫
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W granicznym przypadku, dla gd TT → :  

0QQQ dg →−=δ∫  

a całka okręŜna i tak jest równa 0: 

0
T

Q
=

δ
∫  

dla wszystkich T (oczywiście silnik ma być silnikiem, więc zawsze dg TT ≥ .  

Dla wszystkich odwracalnych silników cieplnych: 

0
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∫

∫
,         (4) 

nierówność Clausiusa jest spełniona.  

Dla silnika nieodwracalnego pracującego pomiędzy Tg i Td pobierającego Qg: 

W'W <  

a poniewaŜ: 

dg QQW −=               i              dg 'QQ'W −=  

musi zachodzić:  

dgdg QQ'QQ −<− ,  

a zatem:  

dd Q'Q > .         (5) 

Dla silnika nieodwracalnego 
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gdzie druga nierówność wynika z (5) i (3).   

Jednak dla ustalonych Tg, Td i Qg, gdy rośnie nieodwracalność, czyli 0'W →  i gd Q'Q →  

mamy: 
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Tak więc, dla wszystkich silników nieodwracalnych: 
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a dla wszystkich silników, odwracalnych i nieodwracalnych czyli wszystkich obiegów pra-

wobieŜnych: 

0
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nierówność Clausiusa jest spełniona. 

Rozpatrzymy teraz odwracalną chłodziarkę, czyli uwzględnimy obiegi lewobieŜne.  Jak poka-

zano na Rys. 13.3, chłodziarka pracuje pomiędzy źródłem dolnym o temperaturze Td i gór-

nym o temperaturze Tg   

 

Rys. 13.3.  Chłodziarka odwracalna.  Chłodziarka pobiera ciepło Qd ze 

źródła dolnego o temperaturze Td i oddaje ciepło Qg do źródła górnego o 

temperaturze Tg.  Do pracy chłodziarki niezbędna jest takŜe dostarczana z 

zewnątrz praca W.. 

 

 

Z I zasady: 
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a więc dg QQ >  choć, dla dg TT → , dg QQ → .   
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Z II zasady: 
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Podsumowując, dla wszystkich odwracalnych chłodziarek (obiegów lewobieŜnych): 
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Qd
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Nierówność Clausiusa (w wersji równość) obowiązuje takŜe obiegów lewobieŜnych odwra-

calnych.   

Dla chłodziarki nieodwracalnej pracującej pomiędzy Td i Tg pobierającej Qd: 

W'W >  

a poniewaŜ:  

dg QQW −=               i              dg Q'Q'W −=  

musi zachodzić: 

dgdg QQQ'Q −>−  

co oznacza, Ŝe: 

gg Q'Q >          (7) 

co wykorzystamy za chwilę.   

Tak więc, dla chłodziarki nieodwracalnej: 
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przy czym druga nierówność wynika z (6) i (7). 

Rozpatrzymy przypadki graniczne; zaczniemy od malejącej nieodwracalności (przy ustalo-

nych Td, Tg i Qd).  Gdy: W'W →  i, w konsekwencji gg Q'Q → , niezmiennie mamy: 
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Dla ustalonych Td, Tg i Qd, gdy nieodwracalność rośnie, ∞→'W  i, w konsekwencji 

∞→g'Q  ciągle mamy: 
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Dla wszystkich chłodziarek nieodwracalnych (obiegów lewobieŜnych):  
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a dla wszystkich chłodziarek, odwracalnych i nieodwracalnych:  
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Podsumowując, dla wszystkich moŜliwych obiegów: 0Q
≤

≥∫δ , zachodzi: 

0
T

Q
≤

δ
∫ , 

przy czym równość zachodzi dla obiegów odwracalnych. 

Udowodniliśmy nierówność Clausiusa.  

1.1.1. Nierówność Clausiusa jako test zgodności obiegu z II zasadą termodynamiki 

Nierówność Clausiusa daje moŜliwość weryfikacji, czy dany proces (obieg) jest czy nie jest 

zgodny z II zasadą termodynamiki.   

Przykład.  Sprawdzić zgodność działania prostej siłowni parowej pokazanej na Rys. 13.4 z II 

zasadą termodynamiki.   
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Rys. 13.4.  Prosta siłownia parowa.  Parametry pary w poszczególnych lokalizacjach podano w tabeli.  

 

Tabela 1.  Parametry pary w najwaŜniejszych lokalizacjach siłowni parowej 

 

Lokalizacja x (stopień suchości) ciśnienie P, MPa 

1 0 0,7 

2 1 0,7 

3 0,9 0,015 

4 0,1 0,015 
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PoniewaŜ transfer ciepła zachodzi w procesach 1 → 2 i 3 → 4 całka okręŜna będzie równa:   

∫∫∫
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Q
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Q
.  

Procesy te to izotermiczne pobieranie ciepła ze źródła górnego o temperaturze T1(2) i izoter-

miczne oddawanie ciepła do źródła dolnego o temperaturze T3(4).  Mamy zatem: 
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Przebieg procesu w rozpatrywanej siłowni parowej jest zgodny z II zasadą termodynamiki.   

1.2. Entropia; definicja 

Definicja entropii jest oparta na II zasadzie termodynamiki, tzn. nierówności Clausiusa:  

0
T

Q
≤

δ
∫ . 

Dla obiegu odwracalnego nierówność Clausiusa staje się równością:  

0
T

Q
=

δ
∫  

Rozpatrzymy obiegi pokazane na Rys. 13.5.   

 

 

Rys. 13.5.  Rysunek pomocniczy do dowodu, Ŝe entropia jest funk-

cją stanu.  

 

 

Pomiędzy stanami 1 i 2 mogą zachodzić róŜne procesy.  

Wszystkie trzy pokazane procesy, a, b i c, są odwracalne.  

Proces a prowadzi ze stanu 1 do 2.  Proces b jest procesem 

odwrotnym do procesu a, zaczyna się od stanu 2 i kończy na 

stanie 1.  Proces c jest dowolnym procesem odwracalnym 

łączącym stany 1 i 2.  

Korzystając z tych procesów, skonstruujemy dwa róŜne obiegi zamknięte i odwracalne, do 

których zastosujemy nierówność Clausiusa. 
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Odejmując stronami równania dla obu obiegów otrzymujemy: 
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a poniewaŜ proces c był dowolny, więc: 
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Wniosek jest oczywisty; wartość całki: 

∫
δ

2

1
T

Q
 

nie zaleŜy od wyboru drogi pomiędzy stanami 1 i 2.   

PoniewaŜ wartość tej całki zaleŜy od stanów 1 i 2, zatem musi być ona równa róŜnicy dwóch 

liczb określonych dla stanów 1 i 2.  Liczby te muszą być wartościami pewnej funkcji, która 

jest funkcją stanu.  Mamy więc:   

∫ 

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 δ=−
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1 odwr
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Q
SS        lub       

odwrT
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dS 
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


 δ=     (7) 

pod warunkiem, Ŝe proces prowadzący od stanu 1 do 2 jest odwracalny. 

Funkcję stanu S nazywamy entropią.  Dowolna funkcja stanu moŜe być takŜe parametrem 

termodynamicznym układu (jeśli taki będzie nasz wybór).  Entropia moŜe być zatem parame-

trem układu, który wraz z innym parametrem (np. T, P, v, x , u lub h) określa stan układu. 

Entropia układu do którego dostarczamy ciepło, rośnie, a entropia układu, który oddaje cie-

pło, maleje.  

1.3. Entropia w przemianie nieodwracalnej; po raz pierwszy (będzie więcej).  

PoniewaŜ entropia jest funkcją stanu, nie ma znaczenia czy proces prowadzący ze stanu 1 do 

stanu 2 jest odwracalny czy nieodwracalny.  Jednak aby obliczyć róŜnicę entropii w tych sta-

nach musimy policzyć całkę: 

∫
δ

2

1
T

Q
  

dla jakiejś przemiany odwracalnej prowadzącej ze stanu 1 do stanu 2, bo tylko dla przemiany 

odwracalnej wartość tej całki jest równa róŜnicy wartości funkcji stanu S (entropii): 

( ) ∫ 






 δ=−
2

1 odwr jakaśnieodwr
12

T

Q
SS .  

Zatem Ŝeby wyliczyć zmianę entropii dla przemiany nieodwracalnej w układzie zamkniętym, 

zastępujemy przemianę nieodwracalną przemianą odwracalną pomiędzy tymi samymi stana-

mi, 1 i 2 i wyliczamy całkę: 
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dla tej konkretnej przemiany odwracalnej.   

Jeśli odwracalna przemiana jest izotermiczna: 

T

Q

T

Q
SS

2

1

12 =
δ

=− ∫ . 

Jeśli zmiana temperatury jest nieduŜa, lub wystarcza nam wartość przybliŜona lub/i nie 

umiemy wyliczyć całki, moŜna skorzystać z przybliŜenia: 

śr

2

1

12
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Q
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Q
SS =

δ
=− ∫ .  

1.4. Entropia w procesie rozpręŜania swobodnego i odwracalnego rozpręŜania izoter-

micznego gazu doskonałego 

Zastosujemy naszą aktualną wiedzę o entropii do wyliczenia zmiany entropii w procesie nie-

odwracalnym.  Zajmiemy się rozpręŜaniem swobodnym gazu doskonałego.  Dwa stany ukła-

du, w którym zachodzi rozpręŜanie swobodne pokazano na Rys. 13.6.   

 

Rys. 13.6.  Nieodwracalne rozpręŜanie swobodne gazu 

doskonałego.  W stanie 1 cały gaz znajduje się w pierw-

szym pojemniku.  Drugi pojemnik jest odpompowany.  

Oba pojemniki są połączone rurką z kranem.  Po odkrę-

ceniu kranu gaz wypełnia oba pojemniki i po dostatecznie 

długim czasie osiąga stan równowagi termodynamicznej 

2.  Objętość obu pojemników jest jednakowa.  

 

 

Dla gazu doskonałego: 

2PP   ;TT  ;V2V 121212 ===  

Równość temperatur została potwierdzona w do-

świadczenia Joule’a – Thomsona.  Gdyby pojemniki 

nie były izolowane termicznie, równowaga termodynamiczna byłaby osiągnięta nawet szyb-

ciej (pojemnik pierwszy pobrałby z otoczenia tyle samo ciepła ile oddałby pojemnik drugi; w 

konsekwencji nie byłoby transferów ciepła netto).  Warto takŜe zwrócić uwagę, Ŝe (jak się za 

chwilę przekonamy) chociaŜ układ ten efektywnie nie wymienia ciepła z otoczeniem to jed-

nak przemianie towarzyszy zmiana (wzrost) entropii układu.  Jeśli wzrost entropii w układzie 

nie jest spowodowany wymianą ciepła lub masy z otoczeniem to mówimy, Ŝe entropia jest w 

układzie generowana (i kojarzymy to z nieodwracalnością przemiany).  

Swobodne rozpręŜanie jest przemianą nieodwracalną; nie moŜna przecieŜ oczekiwać, Ŝe po 

przemianie 1 → 2 proces się odwróci i gaz zgromadzi się samorzutnie w lewym zbiorniku.  

Choć stan początkowy 1, oraz końcowy 2, są stanami równowagi, stany pośrednie nie są sta-

nami równowagi.  Nie jest moŜliwe przeprowadzenie tej przemiany w kierunku odwrotnym.  

stan 1

stan 2

próŜnia
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Aby wyliczyć zmianę entropii w procesie rozpręŜania swobodnego wykorzystamy fakt, Ŝe 

stan 1 i 2 mogą być stanami odwracalnej przemiany izotermicznej.  

Przemianę tę zrealizować moŜna w układzie pokazanym na Rys. 13.7. 

312 K

regulowany 
grzejnik

zmienne 
obciąŜenie

V2 = 2V1;  P2 = P1/2

 

 

P

V1 V2 V

1

2

 

Rys. 13.7.  Realizacja przemiany izotermicznej pomiędzy stanami 1 i 2, które są takŜe stanami począt-

kowym i końcowym dla rozpręŜania swobodnego, pokazanego na Rys. 13.6.  Malejące obciąŜenie tło-

ka powoduje rozpręŜanie gazu w cylindrze; obniŜaniu się temperatury zapobiega kontrolowany przez 

czujnik temperatury układ sterujący połączony z grzejnikiem.   

 

PoniewaŜ przemiana ta jest odwracalna: 

∫∫ δ=
δ
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Z I zasady dla przemiany izotermicznej:  
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Podstawiając (9) do (8) i wykorzystując równanie stanu gazu doskonałego otrzymamy: 
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gdzie R  to uniwersalna stała gazowa (w kJ/kmol·K), a n to liczba kmoli gazu.   

Dla 12 V2V = :   2lnNk
1

2
lnRnSSS 12 ==−=∆ ,  

a więc zmiana entropii pomiędzy stanami 1 i 2 jest róŜna od zera (takŜe dla rozpręŜania swo-

bodnego, dla którego nie ma wymiany ciepła pomiędzy układem i otoczeniem).  
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PokaŜemy, Ŝe taki sam wynik dostaniemy dla statystycznej interpretacji entropii 

1.5. Entropia w ujęciu statystycznym 

Zastosujemy teraz statystyczne podejście do problemu rozkładu cząsteczek gazu pomiędzy 

dwoma połówkami izolowanego zbiornika.  Układ taki jest bardzo podobny do układu dwóch 

połączonych pojemników pokazanych na Rys. 13.6.  

RozwaŜymy dokładniej sytuację, gdy liczba cząsteczek gazu wynosi 6.  Na Rys. 13.8 pokazu-

jemy dwa mikrostany dwóch róŜnych konfiguracji. 

1 mikrostan konfiguracji (4,2) 1 mikrostan konfiguracji (3,3)

a b

 

Rys. 13.8.  Pojemnik z gazem dzielimy na dwie równe objętościowo części.  RozwaŜamy wszystkie moŜ-

liwe rozkłady skończonej liczby cząsteczek gazu pomiędzy tymi dwoma połówkami Zakładamy, Ŝe cał-

kowita liczba cząsteczek gazu wynosi 6.   Na rysunku pokazano a) jeden z piętnastu mikrostanów kon-

figuracji (4,2), b) jeden z dwudziestu mikrostanów konfiguracji (3,3).   

 

PoniewaŜ cząsteczki są identyczne, obie połówki zbiornika są jednakowe, prawdopodobień-

stwo znalezienia dowolnej cząsteczki w kaŜdej z nich jest takie samo.  

 

Konfiguracja        wielokrotność W obliczenie W  prawdopodobieństwo 

ozn. n1 n2   

I 6 0  1    6!/(6!.0!)  0,0156 

II 5 1  6    6!/(5!.1!)  0,0938 

III 4 2  15    6!/(4!.2!)  0,234 

IV 3 3  20    6!/(3!.3!)  0,313 

V 2 4  15… 

Łączna liczba mikrostanów 64, wszystkie mikrostany są tak samo prawdopodobne.  

Liczba mikrostanów odpowiadających danej konfiguracji (n1,n2) to wielokrotność tej konfi-

guracji W.  

!n!n

!N
W

21 ⋅
= , 

a prawdopodobieństwo danej konfiguracji będzie równe:  

( ) ( )
( )∑

=

j,i

21
21

j,iW

n,nW
n,nP . 

Dla tak niewielkiej liczby cząsteczek rozkład ten ma co prawda maksimum dla równego po-

działu cząsteczek pomiędzy dwie połówki, ale prawdopodobieństwo jest znaczące takŜe dla 

innych konfiguracji.   



Termodynamika Techniczna dla MWT, Rozdział 13. © AJ Wojtowicz IF UMK 

 - 133 - 

Sytuacja zmienia się bardzo silnie dla rosnącej liczby cząsteczek.   

Na Rys. 13.9 pokazano symboliczny wykres liczby mikrostanów w zaleŜności od procentowej 

zawartości cząsteczek w lewej połowie zbiornika w przypadku bardzo duŜej liczby cząsteczek 

w zbiorniku.  Niemal wszystkie mikrostany odpowiadają w przybliŜeniu równemu rozkładowi 

liczby cząsteczek gazu pomiędzy dwoma połówkami zbiornika.  

 

Rys. 13.9.  Liczba mikrostanów w konfiguracjach 

odpowiadających odpowiedniej procentowej 

zawartości cząsteczek w lewej połówce pojemni-

ka z gazem dla bardzo duŜej liczby cząsteczek. 

 

 

 

 

 

Zaproponowany przez Boltzmanna związek pomiędzy entropią danego stanu a liczbą mikro-

stanów W konfiguracji odpowiadającej danemu stanowi jest następujący: 

WlnkS =      wzór Boltzmanna na entropię     (11) 

gdzie k jest stałą Boltzmanna.  Stan termodynamiczny, cechujący się duŜą liczbą równowaŜ-

nych mikrostanów będzie z jednej strony stanem o wysokiej entropii, z drugiej o wysokim 

stopniu nieuporządkowania.  Entropia zatem jest miarą nieuporządkowania układu termody-

namicznego na poziomie molekularnym.  Jak pokazuje przykład z rozpręŜaniem swobodnym, 

spontaniczne (samorzutne) procesy w układzie powodują wzrost entropii.  Mało prawdopo-

dobne są procesy odwrotne.  

Bardzo przydatny w konkretnych rachunkach związanych ze wzorem Boltzmanna jest wzór 

Sterlinga: 

( ) NNlnN!Nln −≈ . 

Przykład 1. 

Wyobraźmy sobie, Ŝe w zbiorniku znajduje się 100 nierozróŜnialnych cząsteczek.  Ile mikro-

stanów odpowiada konfiguracji n1 = 50 i n2 = 50? A ile konfiguracji n1 = 100 i n2 = 0? Zinter-

pretuj uzyskane wyniki w odniesieniu do prawdopodobieństwa wystąpienia obydwu konfigu-

racji.  

( )
( )

29

264

157

21

1001,1

1004,3

1033,9

!50!50

!100

!n!n

!N
50,50W ⋅=

⋅

⋅
=

⋅
==  

( ) 1
1033,9

1033,9

!0!100

!100

!n!n

!N
0,100W

157

157

21

=
⋅

⋅
=

⋅
==  

( ) ( )0,100P1001,150,50P 29 ×⋅=  

Jak widzimy prawdopodobieństwo równego rozkładu liczby cząsteczek gazu pomiędzy dwie 

połówki zbiornika jest znacznie większe niŜ prawdopodobieństwo, Ŝe wszystkie cząsteczki 

znajdą się w tej samej połówce zbiornika. 

Procent cząsteczek gazu w lewej połówce

0            25           50          75          100%

L
ic

z
b
a
 m

ik
ro

s
ta

n
ó
w

W
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Przykład 2. 

Pokazaliśmy wcześniej, Ŝe kiedy n moli gazu doskonałego zwiększa dwukrotnie swoją obję-

tość na drodze rozpręŜania swobodnego, to wzrost entropii od stanu początkowego 1 do stanu 

końcowego 2 jest równy: 

2lnNk2lnRnSS 12 ==−  

Sprawdzimy, Ŝe korzystając ze statystycznej interpretacji entropii otrzymamy ten sam wynik:  

( ) ( )!2N!2N

!N
lnkWlnkS

!0!N

!N
lnkWlnkS

22

11

⋅
==

⋅
==

 

Stosując wzór Stirlinga otrzymujemy: 

( )( )

2lnRn2lnNk
2

N
lnNlnkN

2

N

2

N
ln

2

N
2NNlnNk

1lnk!2Nlnk2!NlnkSS 12

==






 −=
















 −⋅−−

−⋅−=−

 

a więc dokładnie taki sam wynik jaki dostaliśmy wcześniej.   

1.6. Zmiany entropii gazu doskonałego i półdoskonałego podczas dowolnej przemiany 

odwracalnej w układzie zamkniętym  

Wybieramy stan początkowy 1 jako (T1, V1) i stan końcowy 2 jako (T2, V2).  Przyjmujemy T1 

≠ T2 i V1 ≠ V2 i nie precyzujemy drogi czyli przemiana czynnika termodynamicznego w roz-

patrywanym układzie zamkniętym jest dowolna (ale quasistatyczna czyli odwracalna). 

Z pierwszej zasady termodynamiki:  

W.dUQ        W;-QdU δ+=δδδ=  

Dla gazu doskonałego: 

,
V

dV
TRnPdVW        ;dTnCdU V ==δ=  

gdzie n jest liczbą moli (kmoli) gazu, a R  uniwersalną stałą gazową.  Po podstawieniu: 

,
V

dV
TRndTnCQ V +=δ  

a po podzieleniu przez T otrzymujemy: 

.
V

dV
Rn

T

dT
nCdS

T

Q
V +==

δ
 

Po scałkowaniu od stanu początkowego 1 do stanu końcowego 2 mamy: 

.
V

V
lnRn

T

T
lnnC

V

dV
Rn

T

dT
nCdS

T

Q

1

2

1

2
V

2

1

2

1
V

2

1

2

1

+=∫+∫=∫=∫
δ

  (12) 

A zatem: 
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1

2

1

2
V12

V

V
lnRn

T

T
lnnCSSS +=−=∆      (13) 

niezaleŜnie od przemiany gazu doskonałego prowadzącej z 1 do 2.  

Dla gazu półdoskonałego uwzględnić musimy zaleŜność ciepła właściwego CV od temperatu-

ry.  Wzór (12) przyjmie zatem postać:  

1

2
2

1
V12

V

V
lnRn

T

dT
CnSSS +∫=−=∆ . 

Oczywiście wyraŜenie to przechodzi w wyraŜenie (13) dla CV niezaleŜnego od T.  Całkę  

∫
2

1

V dT
T

C
 

moŜna obliczyć, biorąc analityczne wyraŜenia przybliŜające CV choć najwygodniej jest wyko-

rzystać tablice, dla sporządzenia których obliczenia takie zostały wykonane  Najczęściej jed-

nak korzysta się z tablic z całką z CP a nie z CV (analityczne wyraŜenia na CP zostały podane 

np. w Tabeli A6, SBvW).   

Wykorzystamy zatem wyraŜenie: 

( )
V

dV
Rn

T

dT
RCn

V

dV
Rn

T

dT
nC

T

Q
dS PV +−=+=

δ
=  

by otrzymać: 








 −−=
δ

=
V

dV

T

dT
Rn

T

dT
nC

T

Q
dS P  

a po uwzględnieniu równania stanu gazu doskonałego (i półdoskonałego): 

dTRnVdPPdV

TRnPV

=+

=
 

mamy: 

P

dP
Rn

T

dT
nC

V

dV

T

dT
Rn

T

dT
nC

T

Q
dS PP −=







 −−=
δ

= .   (13’) 

Po scałkowaniu od stanu początkowego do końcowego otrzymamy: 

( ) ( )

( ) ( )( )
1

20
T

0
T

1

2
T

T

P
T

T

P
2

1

2

1

P

P

P
lnRn1s2sn

P

P
lnRndT

T

C
ndT

T

C
n

P

dP
RndT

T

C
n1S2S

12

2

0

0

1

−−=

−∫+∫=∫−∫=−

, (14) 

gdzie całka: 

∫=
T

T

P0
T

0

dT
T

C
s         (15) 

jest stablicowaną funkcją jednej zmiennej T (np. dla powietrza zobacz Tabelę A7 SBvW, dla 

szeregu innych gazów zobacz takŜe Tabelę A8, tamŜe).  Wartości w tych tabelach zostały 
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podane dla ciśnienia 0,1 MPa.  Dla innych ciśnień wartość odczytaną z tabeli naleŜy skory-

gować o poprawkę:  

1

2

P

P
lnRn− ,  

gwarantującą uwzględnienie zaleŜności entropii takŜe od ciśnienia P.   

1.7. Zmiany entropii dla cieczy i ciała stałego 

RozwaŜamy infinitezymalną zmianę stanu substancji nieściśliwej w trakcie przemiany odwra-

calnej.  

Z I zasady termodynamiki (na jednostkę masy rozpatrywanej substancji, powiedzmy 1 kg): 

duPdvduq ≈+=δ  

gdyŜ zmiany objętości właściwej dla cieczy i ciała stałego są nieduŜe.  W równaniu tym δq to 

ciepło dostarczone w trakcie przemiany odwracalnej (na kg substancji): 

CdTq =δ  

gdzie C to ciepło właściwe danej substancji: 

.CCC VP ≈≈  

Z II zasady termodynamiki dla przemiany odwracalnej: 

,
T

q
ds

δ
=  

a więc: 

T

dT
C

T

du
ds ≈≈ . 

Jeśli ciepło właściwe nie zaleŜy od temperatury:  

1

2
12

T

T
lnCss =−         (16) 

a jeśli zaleŜy, to: 

( )
∫=−
2

1

12 dT
T

TC
ss         (17) 

gdzie przy całkowaniu naleŜy skorzystać z przybliŜonych analitycznych wzorów na C.   

1.8. Czy entropia moŜe maleć? 

(moŜe, ale nie w układzie izolowanym) 

Pokazaliśmy, Ŝe dla izotermicznego odwracalnego rozpręŜania gazu doskonałego (Rys. 

13.10) entropia rośnie: 

.0
V

V
lnNkPdV

T

1

T

Q
S

1

2
2

1

V

V

2

1

>==
δ

=∆ ∫ ∫  
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gdyŜ 12 VV  i  0Q >>δ . 

 

Rys. 13.10.  Izotermiczne odwracalne rozpręŜanie gazu 

doskonałego.  Stan 1 to stan początkowy, stan 2 to stan 

końcowy.  

 

 

 

Oznacza to jednak, Ŝe dla przemiany odwrotnej, 

czyli izotermicznego odwracalnego spręŜania, 

entropia będzie maleć (wynika to z nierówności 

Clausiusa ale i z rachunku, przecieŜ układ oddaje ciepło): 

.0
V

V
lnNkPdV

T

1

T

Q
S

2

1
1

2

V

V

1

2

<==
δ

=∆ ∫ ∫  

Entropia zawsze rośnie dla przemiany nieodwracalnej w układzie izolowanym.  Tutaj układ 

nie jest izolowany (jest wymiana ciepła ze zbiornikiem ciepła) i przemiana jest odwracalna.  

Jeśli potraktujemy gaz i zbiornik ciepła jako dwie części większego układu izolowanego, to 

zmiana entropii całego układu będzie równa zeru dla odwracalnego rozpręŜania izotermicz-

nego:  

0
T

dQ

T

dQ
SSS

2

1 zb

zb
2

1 gaz

gaz
zbgaz ≈−=∆+∆=∆ ∫∫  

gdyŜ Qgaz > 0, Qgaz = Qzb i temperatury Tgaz i Tzb dla przemiany odwracalnej róŜnią się infini-

tezymalnie, Tgaz ≈ Tzb.   

Dla odwracalnego spręŜania izotermicznego, z tych samych powodów: 

0
T

dQ

T

dQ
SSS

2

1 zb

zb
2

1 gaz

gaz
zbgaz ≈+−=∆+=∆ ∫∫ .  

Entropia układu izolowanego nie zmienia się w przemianie odwracalnej.  Gdy zachodzi prze-

miana nieodwracalna (jak np. rozpręŜanie swobodne), w układzie generowana jest dodatkowa 

entropia.  Zatem zmiana entropii układu izolowanego w wyniku zachodzącej w nim przemia-

ny nieodwracalnej nie bilansuje się do zera, lecz będzie dodatnia (entropia układu izolowane-

go rośnie w wyniku przemiany nieodwracalnej).  Powrócimy do tych zagadnień jeszcze raz w 

następnym rozdziale.   

Końcowy wniosek jest taki: 

Entropia układu izolowanego nigdy nie maleje:   

0S ≥∆ .         (18) 

Entropia układu jest nie tylko miarą nieuporządkowania tego układu; jej zmiany są takŜe mia-

rą nieodwracalności zachodzących w nim procesów.  

Jest to jeszcze jedno sformułowanie II zasady termodynamiki.  

 

 

P

V1 V2 V

1

2
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Inne, z którymi spotkaliśmy się wcześniej to: 

sformułowanie Kelvina – Plancka (o silniku idealnym), 

sformułowanie Clausiusa (o chłodziarce idealnej)  

i nierówność Clausiusa, która stanowi podstawę dla wprowadzenia entropii a takŜe kryterium, 

pozwalające ocenić zgodność danego procesu lub obiegu z II zasadą termodynamiki.  

Sprawdzian 1  

Woda jest ogrzewana za pomocą kuchenki.  Uszereguj od największej do najmniejszej zmia-

ny entropii wody w następujących przedziałach temperatury: a) od 20°C do 30°C, b) od 30°C 

do 35°C i c) od 80°C do 85°C. 

Sprawdzian 2  

Gaz doskonały w stanie początkowym 1 ma temperaturę T1.  W stanach końcowych a i b, 

które gaz moŜe osiągnąć w wyniku przemian zaznaczonych na wykresie, jego temperatura T2 

jest większa niŜ w stanie początkowym. 

 

Czy zmiana entropii w przemianie prowadzącej ze stanu 

1 do stanu a jest większa, taka sama, czy mniejsza niŜ w 

przemianie prowadzącej do stanu b? 
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